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Abstract 

The combination of pixels and superpixels has been widely used for image segmentation, 

where the pixels and superpixels are segmented together. These combination methods can obtain 

more robust results by using more informative superpixel features. However, since the superpixel 

may not accurately capture the details for the small and slender regions, the results of these 

combination methods are often label inconsistent with the objects. Furthermore, these methods 

also fall into expensive time cost due to introducing more interactions between pixels and 

superpixels. To overcome the above problems, in this paper, we propose an interactive image 

segmentation method based on multi-layer graph constraints. The relationships between 

pixels/superpixels and labels are introduced into the conventional combination framework to 

further improve the segmentation accuracy. The segmentation model is constructed based on the 

estimation of probabilities of pixels and superpixels by a nonparametric learning framework. Then 

the probabilities of pixels and superpixels are updated iteratively by utilizing the game theory 

based optimization strategy. Experiments on challenging data sets demonstrate that the proposed 

method can obtain better segmentation results than the state-of-the-art methods.  

 

Keywords Image segmentation, superpixel, multi-layer graph, nonparametric learning, game 

theory 

Title Page 

 

Article Information 

Article Title: Multi-layer Graph Constraints for Interactive Image Segmentation via Game Theory 

Authors: Tao Wang, Quansen Sun, Zexuan Ji, Qiang Chen, Peng Fu 

Author affiliations: School of Computer Science and Engineering, Nanjing University of Science 

                                                             
 Corresponding author. Quansen Sun, Email: sunquansen@njust.edu.cn ; Zexuan Ji, E-mail: 

jizexuan@njust.edu.cn. 

 



2 

 

and Technology, Nanjing, 210094, China 

 

 

Correspondence information 

Corresponding author name: Tao Wang 

Affiliation: School of Computer Science and Engineering, Nanjing University of Science and 

Technology, Nanjing, 210094, China 

Address: No. 200, Street Xiao Ling Wei, School of Computer Science and Engineering, Nanjing 

University of Science and Technology, Nanjing, Jiangsu, 210094,China. 

Email address: wangtaoatnjust@163.com & 670101389@qq.com 

Telephone number: (+86) 15850564521 

 

1. Introduction 

As a low-level computer vision task, image segmentation is very important for many high 

level applications [1-4] in computer vision. The problem of image segmentation can be interpreted 

as dividing an image into different regions, where pixels belonging to the same region should have 

consistent features. Though various image segmentation methods have been proposed, it is still a 

challenging problem due to the abroad types of images and large demands on users. 

Generally, the segmentation methods can be classified into unsupervised, semi-supervised and 

full supervised approaches. Recently, the semi-supervised methods, in which the user is allowed to 

provide a few seeds to represent the label information, have gained much popularity. These 

methods are very practical in many applications, because the user can add his intention during the 

segmentation. During last decades, many interactive image segmentation methods have been 

proposed, such as graph cuts [5-10], random walk [11-14], shortest path [15-17] and so on. In 

graph cuts models, the image is represented by a weighted graph. Then the segmentation problem 

is translated to find a minimum cut in the constructed s/t graph via a maximum flow computation 

[18]. In random walk models, the labels of unseeded pixels are estimated based on the seed 

propagation on a relationship graph. In shortest path models, the distances of the paths between 

unseeded and seeded pixels are measured firstly. Then one unseeded pixel is assigned the 

foreground label if there is a shorter path from this pixel to a foreground seed than to any 
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background seeds. In general, the above methods are very sensitive to the seed’s quantity and 

location. If enough seeds are provided, good results can be obtained. However, when the number 

of seeds is limited, it is hard to get satisfactory results and the user needs to pay more efforts. To 

solve the above problem, many methods [19-24] based on image regions obtained by unsupervised 

segmentation algorithms (superpixels) have been proposed, in which pixels within the same 

superpixel are considered to share the same labels. Compared with pixel-level based methods, the 

superpixel based methods can usually obtain more robust results by using more informative 

features. However, the results of these methods are generally affected by the qualities of 

superpixels. In fact, the situations that superpixels are not consistent with boundaries often arise in 

nature images. So the “hard” constraints between pixels and superpixels often lead to 

over-segmentation results.  

Many methods [25-29] combine multiple segmentations produced by one unsupervised 

segmentation algorithm such as mean shift [30] with different parameters to overcome the 

shortcomings of the hard constraint. In the Robust P
n 
model [25], by using condition random filed 

in a principled manner, the hidden soft constraints between pixels and multiple superpixels are 

utilized for the segmentation. Furthermore, the quality of each superpixel is also measured to 

reduce the influence of “bad” superpixels. However, this method only explores how the superpixel 

impacts pixel labeling regardless of the inherent relationships between superpixels and pixels. 

Based on the Robust P
n 

model, many combination segmentation methods have been developed 

[27-29], where in their framework the pixels and superpixels are segmented together. In [27-28], 

the spectrum based models are utilized to segment the pixels and superpixels together. In [29], a 

nonparametric learning model is utilized to estimate the likelihoods of pixels and superpixels. 

These pixel-superpixel combination methods can obtain better results than classic interactive 

methods such as graph cuts and random walk with fewer seeds. However, since the superpixel 

may not accurately capture the details for the small and slender regions, the results of these 

combination methods are often label inconsistent with the objects. Furthermore, due to the 

introduction of more interactions between pixels and superpixels, these methods are also limited to 

the expensive algorithm cost. For example, the method in [29] has a heavy burden to solve the 

inversion of an over-large matrix. 

To solve the above problems, in this paper, we propose an interactive image segmentation 
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method based on multi-layer graph constraints. The relationships between pixels/superpixels and 

labels are introduced to overcome the label inconsistent of the conventional combination methods. 

Then the multi-layer connections among the pixel-layer, superpixel-layer and label-layer are fused 

for the segmentation. A nonparametric learning framework is utilized to estimate the probabilities 

of pixels and superpixels, respectively. The optimization of the proposed segmentation energy 

function is considered as a game theory problem, where the probabilities of pixels and superpixels 

are updated iteratively until convergence. The proposed method can obtain high-quality 

segmentation results with more accurate object details, less user’s interactions, and lower time 

cost. As shown in Fig. 1, in the first two columns only one pixel-seed is selected for each label, 

and in the last two columns the trimap is used for the challenging image with slender objects. It 

can be seen that satisfactory results can be produced shown in row 2
nd

. 

 

Fig. 1 Image segmentation results by using the proposed method. Columns 1st and 2nd show the segmentation 

results with only one pixel-seed for each label (red for foreground and green for background). Columns 3rd and 4th 

show the segmentation results for slender objects with trimaps. 

 

2. Pixel-superpixel combination model 

The problem of interactive segmentation can be regarded as estimating the labels of unseeded 

pixels based on seeded pixels. The similarities of all pairwise pixels are usually used to propagate 

the relationships between seeded and unseeded pixels. If one unseeded pixel has high similarity 

with the foreground seeds, then it is likely belonging to the foreground. Fig. 2 shows a 

neighboring relationship graph of pixels, where the neighboring pixels xi  and xj  share the 

weight ij .  
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xi xjij

Pixel

Image

 
Fig. 2 The 4-neighborhood relationship graph for pixel-level based models, where xi  and xj  are 

neighborhood pixels and ij  represents their similarity.  

 

The weight of pixels xi  and xj  is always defined as a typical Gaussian function: 

 2
exp( ) x

0 otherwise

i j j

j

i

i

c c


   
 


 (1) 

where ic  denotes the intensity feature at pixel xi  and   is a constant that controls the strength 

of the weight. i  represents the neighborhood of xi . Then the energy function of the 

probabilities for pixels with respect to the label {1,...L}l  can be naturally defined as follows 

[11]: 
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where XN  represents the number of all the pixels in the image, and il  is the probability of the 

pixel xi  belonging to the label l . The right term is the matrix form of the middle term, where 

1Xl il N      and the Laplacian matrix   X Xij N NL l D W   .   X Xij N NW    and 

 1( ,..., )XND diag d d , where 
1

XN
i ij

j
d 


 . Partitioning the pixels into two sets: MX  

(labeled/seeds pixels) and UX  (unlabeled pixels), such that M UX X X  and M UX X  . 

Under the assumption the nodes in L  and   are ordered such that seeded nodes are first and 

unseeded nodes are second [11], then the equation (2) can be decomposed into: 

 

1
( )

2

M M

U M U

U U

T T

T

L B
E

LB


  



   
      

  
 (3) 

where 1MM i Nx      and 1UU i Nx      correspond to the potentials of the seeded and 

unseeded pixels, respectively.   M MM ij Nx NxL l  ,   U UU ij Nx NxL l  , and   M Uij Nx NxB l   are three 

sub-blocks of the ordered L  which correspond to the nodes’ relationships between labeled pixels, 

unlabeled pixels, and unlabeled-labeled pixels, respectively. Since L  is positive semi-definite 
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[11], the only critical points of ( )UE   will be minimal. Differentiating the equation (3) with 

respect to U , the probabilities of unlabeled pixels belonging to the label l  can be obtained: 

 U
U M

l T lL B    (4) 

where 1M

l
il NxM      and 

1 if Q(x )

0 if Q(x )

i

il

i

l

l



 


, Q(x )i  denotes the label for the marked pixel 

xi . Finally, the unlabeled pixels are assigned the labels with maximum probabilities.    

Pixel- based Layer

yi Y

Superpixel- based Layer

ix X X

Y

XY

Superpixel- S Superpixel-1  

Fig. 3 The graph of multi-layer relationships between pixels and superpixels, where the top is the pixel-based layer, 

and the below is the superpixel-based layer. X  represents the pairwise weights between neighboring pixels, 

Y  represents the full connected weights of all superpixels and XY  represents the weights of inter-layer 

connections between pixels and superpixels. S  denotes the number of superpixel layers. 

 

As the above description, the relationships between pixels are used to estimate the labels of the 

unmarked pixels in the pixel-level based methods. However, the similarities between pixels are 

not accurate enough, which makes the segmentation sensitive to the seeds’ quantity and location. 

To improve the robustness of the segmentation, the superpixels obtained by unsupervised 

segmentation algorithms are successfully combined with pixels. The graph of multi-layer 

relationships between pixels and superpixels can be generally described in Fig. 3, where the top of 

the graph shows the pixel-based layer composed of all pixels in the image, and the below one 

shows the superpixel-based layer formed by one unsupervised algorithm with different parameters 

or different unsupervised algorithms.  

The pairwise neighboring weights X  inside the pixels have been described in equation (1). 

Unlike the adjacent connections of pixels, the long-range connections between superpixels are 

usually considered, which is helpful in propagating the labeling cues of each region to the whole 

image areas. The full relationships between any two superpixels are typically defined as follows: 
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where ic  is the mean color of the pixels in the superpixel iy . Due to the fact that each pixel 

corresponds to only one superpixel in one over-segmentation, the weight XY

ij  ( YX

ji ) between 

the pixel ix  and the superpixel jy  is described as follows: 
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Based on the above connections, two quadratic cost functions are designed in [29] to estimate 

the likelihoods probabilities, one corresponds to the learning of pixel likelihoods and the other 

corresponds to the superpixel likelihoods:
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where 
1

XNX X

i ijj
d 


  and 

1

YNY Y

i ijj
d 


 , the two parameters X

i  and Y

i  are constants with 

high value for the seeded pixels/superpixels, and 0 otherwise. The seeded superpixels can be 

generally determined based on the seeded pixels, where superpixels containing the seeded pixels 

are considered as the seeds with the same label of the seeded pixels. However, in some cases the 

superpixels may contain pixel seeds with different labels and these inaccurate superpixels are 

excluded, and only the superpixels containing pixel seeds with the same label are utilized as the 

superpixel seeds. The pixel/superpixel–seed likelihoods 
il   and ilz  are 1 if the pixel/superpxiel 

ix / iy  is the seed with the label l , and 0 otherwise. The estimated likelihood il  is defined as 

the weighted average of the corresponding superpixel likelihoods at the pixel ix , 

1

YN XY
il jlijj

z 


  with 
1

= /
YNXY XY XY

ij ij ijj
  

 . The estimated likelihood ilz  is defined as the 

weighted average of the containing pixel likelihoods at the superpixel iy , 
1

XN YX
il jlijj

z  


  with 

1
= /

XNYX YX YX

ij ij ijj
  

 .   and   are two adjustment coefficients. The first term is similar to 

equation (2) which is based on the relationships inside the pixel/superpixel layer. The second term 

imposes the constraint for seeds that each seed should be assigned to the initial label. The third 

term utilizes the relationships between pixels and superpixels. These two functions influence each 
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other and a nonparametric optimization method is used to obtain the likelihood probability of each 

pixel. For more details, please refer to [29].  

Though the combination of pixels and superpixels can lead to more informative results, there 

still exist some problems which can be summarized as the following two aspects, one is the 

inconsistency with the label information caused by the inaccurate superpixel constraint especially 

in many small regions, and the other is the increasing algorithm burden due to the introduction of 

more interactions. 

 

3. The proposed model 

Generally, the interactive segmentation methods should satisfy the following two conditions, 

one is the aim of extracting accurate object details and the other is the segmentation should not be 

sensitive to the seeds. The combination of pixels and superpixels can improve the robustness to 

seeds. To further improve the segmentation accuracy, in this paper, we introduce the relationships 

between pixels/superpixels and labels into the conventional combination framework, and fuse the 

multi-layer connections among the pixel-layer, superpixel-layer, and label-layer together for the 

segmentation.  

3.1 Construction of Graph 

We construct an undirected graph ( , )G V E  with pixels, superpixels and labels as nodes 

{ , , }V X Y L , as shown in Fig. 4. The edges { , , , , }X Y XY XL YLE E E E E E  are the connections 

between pairwise nodes. 

Pixel- based Layer

yi Y

Superpixel- based Layer

ix X X

Y

XY

XL

YL

Label- based L ayer

{1,...L}l

Superpixel- S Superpixel-1  

Fig. 4 An illustration of the proposed graph G . The vertex set V  consists of three kinds of nodes, the first 

denotes the pixels ix X  (green circles), the second denotes the multiple superpixels iy Y  (red and blue 

circles) and the last denotes the labels {1,...L}l  (orange circles). The edge set E  consists of five kinds of 

connections, where 
X  corresponds to the relationships between pixels, 

Y  corresponds to the relationships 
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between superpixels, 
XY  corresponds to the relationships between pixels and superpixels, 

XL  and YL  

correspond to the relationships between pixels/superpixels and labels, respectively. S  represents the number of 

multiple superpixel layers. 

 

1) XE : the connections among neighborhood pixels. The weights between pixels X  were 

defined in equation (1); 

2) YE : the full connections of superpixels. The weights between superpixels Y  were defined in 

equation (5); 

3) XYE : the connections between the pixel-based layer and the superpixel-based layer. It is used 

to describe the relationships of pixels to their corresponding superpixels. The weights between 

pixels and superpixels XY  were defined in equation (6); 

4) XLE : the connections between pixels and labels. Each pixel is linked with all label nodes with 

the weights XL . The prior information of each label can be estimated by the seeds provided by 

the user. Any cluster algorithms can be chosen to model the seeds for each label, in this paper, we 

use the Gaussian Mixture Model (GMM) to learn this information. Then for each label 

{1,...L}l , the GMM with K  components is utilized on the set { , }s s

l lX Y  which consists of 

pixels and superpixels seeds with the label l . Therefore, we can get K  Gaussian parameters set 

1{ ,... }
l ll

K    and { , } ( {1,... }),l l l

k k k

l

k k K    , where l

k
 , l

k
  and l

k
  denote the mixture 

coefficient, the mean and the covariance for the kth  Gaussian component, respectively. The 

weight 
XL

il  between the pixel ix  and the label l  is defined as follows: 
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 (8)

 

where dim is the dimension of ic  (3 for the color image) and   is a constant with high value 

which is used to constraint the seeds belonging to the initial labels. Then we normalize the values 

of 
XL

il  for all unseeded pixels with the constraint 
1

1
XLL

ill



 . With these connections, it is 

possible to utilize the relationships between pixels and labels. Notably, some specific experiments 

with only one pixel-seed for each label are conducted to test the robustness to users’ inputs. In 

these experiments, the GMM cannot model the seeds, and the weight 
XL

il  is simply defined as 
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the Euclidean distance between each pixel and the pixel-seed to approximately test the impact 

with/without the label constraint. 

5) YLE : the connections between superpixels and labels. The Gaussian models obtained above are 

utilized to estimate the relationships between superpixels and labels. The weight 
YL

il  between the 

superpixel iy  and the label l  is defined as follows: 
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{1,... }
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1
exp( [ ] ( ) [ ])

2max if
(2 ) | |

otherwise
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k
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where s

lY  is the set that consists of superpixel seeds with the label l . The normalization 

operation is also used for the unseeded superpixels. By these connections, it is possible to transfer 

the relationships between superpixels and labels. In the one seed experiments, the weight 
YL

il  is 

simply defined based on the Euclidean distance between each superpixel and the superpixel-seed 

to approximately test the impact with/without the label constraint. 

3.2 Estimation of probability 

Based on the definition of the multi-layer relationships among pixels, superpixels and labels in 

Section 3.1, we can simultaneously estimate all pixels and superpixels probabilities for each label 

based on the initial seeds.  

We firstly define the cost function of pixels probabilities with respect to a label l  as follows: 
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where the first term ,P

X

l  is the pixel-level constraint that two neighboring pixels should have the 

same label if their color features are similar. The second term ,H

X

l  is the soft superpixel 

consistency that a pixel probability should be similar to its corresponding superpixel probability. 

The third term ,R

X

l  is the constraint between pixels and the label l . If the pixel ix  has a large 

weight 
XL

il  with the label l , it should have a high probability il  and this can be realized by 

the term 
2( 1)

XL

ilil   . If ix  has a small weight 
XL

il  with the label l , it should have a low 
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probability il  and this can be realized by the term 
2

'

' 1, '

XL
L

ilil

l l l

 
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 . The values of X

id  and il  

have been defined in equation (7), where X

id  is used to balance the influence with the first term. 

The seeds 
li
sx X  with the label l  are imposed the hard constraint 1il   with the definition 

XL

il   (   ) and the other seeds 
'li

sx X  ( 'l l ) are also imposed the hard constraint 

0il   with the definition '

XL

il   (   ). The parameter   is used to control the effect of 

the third term and the function ( )X

lD   is degenerated to equation (7) if   is set to 0. 

Then we define the cost function of superpixels probabilities with respect to a label l  as 

follows: 
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where the first term ,P

Y

l  is the superpixel-level constraint that two superpixels in the full 

neighborhood system should have the same label if their representative colors are similar. The 

second term ,

Y

l S  is the estimated unary constraint that a superpixel probability should be similar 

to the weighted average of inner pixel probabilities. The third term ,R

Y

l  is the constraint between 

superpixels and the label l . If the superpixel iy  has a large weight 
YL

il  with the label l , it 

should have a high probability ilz  and this can be realized by the term 
2(z 1)

YL

ilil  . If iy  has a 

small weight 
YL

il  with the label l , it should have a low probability ilz  and this can be realized 

by the term 
2

'

' 1, '

YL
L

ilil

l l l

z
 

 . The values of Y

id  and ilz  have been defined in equation (7), where 

Y

id  is used to balance the influence with the first term. The seeds li
sy Y  with the label l  are 

imposed the hard constraint 1ilz   with the definition 
YL

il   (   ) and the other seeds 

'li
sy Y  ( 'l l ) are also imposed the hard constraint 0ilz   with the definition '

YL

il   

(   ). The parameter   is used to control the effect of the third term and the function ( )Y

lD z  

is degenerated to equation (7) if   is set to 0. 
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3.3 Optimization 

The two cost functions ( )X

lD   in Eq. (10) and ( )Y

lD z  in Eq. (11) can be reformulated as 

the matrix forms with respect to the probabilities  
1X

l il
N

 


  and  
1Y

l il
N

z z


 : 

 '

' 1, '

( ) (D W ) ( P ) D ( P ) ( ) D W ( )

D W

T

l

T

l

X X X XY T X XY X T X XL X
l ll l l l l l l

L
X XL

l l

l l l

D z z O O       

 
 

        

 
(12)

 

 '

' 1, '

( ) (D W ) ( P ) D ( P ) ( ) D W ( )

D W

T

l

T

l

Y Y Y YX T Y YX Y T Y YL Y

l l l l l l l l l

L
Y YL

l l

l l l

D Z z z z z z O z O

z z

   


 

       

 
(13)

 

where W X X
X X

N Nij      and  W Y Y
Y Y

N Nij     . The matrixes P X Y
XY XY

N Nij      and 

P Y X
YX YX

N Nij      represent the relationships between pixels and superpixels. The diagonal 

elements of the matrixes 1D = ( ,..., )
X

X X X

Ndiag d d    and 1D = ( ,..., )
Y

Y Y Y

Ndiag d d    show the degree 

of WX  and WY , respectively. The diagonal elements of the matrixes 

1W = ( ,..., )
X

XL XL XL

l l N ldiag      and 1W = ( ,..., )
Y

YL YL YL

l l N ldiag      are the relationships between 

pixels/superpixels and the label l .   1= 1 X
X

NO   and   1= 1 Y
Y

NO  . 

Because the two cost functions ( )X

lD   and ( )Y

lD z  are supplementary to each other, they 

can be solved based on the simultaneous convex optimization method in [29]. By utilizing 

simultaneous convex optimization, we can obtain the probabilities of pixels and superpixels 

 ;l l lz   as follows (referring to appendix for detailed derivation): 

 
1H W ;WXL X YL Y

l l lO O        (14) 

where the matrix     . 
P P

P P

X XY

YX Y





 
   

  
 and the diagonal matrix 

1

1

1

1(1 ) W

(1 ) W

L XL

ll
L YL

ll

 

 




 
 

     
    




. 1P D WX X X  and 1P D WY Y Y . 

From Eq. (14), it can be seen that   is a ( + ) ( + )X Y X YN N N N  matrix, where XN  is the 

number of all pixels and YN  is the number of all superpixels. Though optimal solution can be 

obtained by the simultaneous convex optimization, it is limited to the expensive cost of solving the 
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inversion of the matrix  . 

In this paper, we consider the optimization of Eqs. (12-13) as a parallel game-theoretic 

decision making problem. The game is played out by a set of decision makers, which in our case 

corresponds to the probabilities of pixels l  and the probabilities of superpixels lz . We assume 

1P  is the set of strategies of the player 1, and 2P  is the set of strategies of the player 2, then 

players try to minimize their respective payoff functions 1 2( , )iF p p  until finding the Nash 

Equilibrium (NE) [31, 32] of the system. Formally, a pair of strategies ( 1 1 2 2,p P p P  ) 

constitutes a NE solution if 

 1 2 1 1 2 1 1 2 2 1 2 2 1 2, ( , ) ( , ) ; ( , ) ( , )p p F p p F p p F p p F p p    (15) 

If we move to the NE iteratively by taking t  as the time index, this procedure can be viewed 

as [32]: 

 
1 1 2 2

1 1 1 2 2 2 1 2

1 1argmin ( , ) ; arg min ( , )t t t t
p P p P

p F p p p F p p 
 

   (16) 

1) Probabilities for pixels 

For the probabilities of pixels l  (player 1), we define: 

 

 

1 1 2

1 21

'

' 1, '

( , ) ( ) ( , )

(D W ) ( ) D W ( ) D W

( P ) D ( P )

T T

l l

l l l

L
X X X T X XL X X XL

l l l l l l

l l l

XY T X XY
l ll l

F p p f f z

O O

z z

  

      

  

 

 

     

  

  (17) 

Differentiating 1 1 2( , )F p p  with respect to l , and set to zero, we can get: 

 
1 1 2

=1

( , )
(D + D W D W ) D W D P 0

L
X X X X XL X XL X X XY

l ll l
l l

F p p
O z    




     


  (18) 

Then from Eq. (18), we can obtain the value of l  as: 

 1B ( D W D P )X XL X X XY
l ll O z     (19) 

where 
1

B D + D W D W
L

X X X X XL

l

l

 


     is a symmetric matrix with size X XN N . The initial 

value of lz  is naturally set as follows: 

 '

1 if

0 if

1/ | | otherw

( '

i

)

se

s

l

s

l

i

il i

Y

Y l

y

z y

L

l

 




 



 (20) 

where | |L  denotes the number of labels.  
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2) Probabilities for superpixels 

For the probabilities of superpixels lz  (player 2), we define: 

 

 

2 1 2

2 12

'

' 1, '

( , ) ( ) ( , )

(D W ) ( ) D W ( ) D W

+ ( P ) D ( P )

T T

l l

l l l

L
Y Y Y T Y YL Y Y YL

l l l l l l

l l l

YX T Y YX

l l l l

F p p f z f z

z z z O z O z z

z z

 

 

  

 

 

     

 

  (21) 

Differentiating 2 1 2( , )F p p  with respect to lz , and set to zero, we can get: 

 
2 1 2

=1

( , )
(D + D W D W ) D W D P 0

L
Y Y Y Y YL Y YL Y Y YX

ll l l
l l

F p p
z O

z
    


     


  (22) 

Then From Eq. (22), we can obtain the value of lz  as:

 

 1C ( D W D P )Y YL Y Y YX
l llz O     (23) 

where 
1

D + D W D W
L

Y Y Y Y YL

l

l

C  


     is a symmetric matrix with size Y YN N . 

3) Convergence analysis 

As pointed in [32], under the following constraints on 1F  and 2F : 

(1) iF  is bounded in i ip P . 

(2) iF  is continuously second order differentiable in i ip P . 

(3)   a closed neighborhood 
i iu P  such that iF  is strongly convex in iu . 

There exists a locally stable NE solution, for any 1 1 1p U P   and 2 2 2p U P  , the 

sequence of rational choices generated by the parallel decision making process converges and the 

limit point is a NE solution if the two parameters   and   corresponding to 
21f  and 

12f , 

respectively, satisfy the following condition: 

 

1
2 2 2

1 1 1 2 1 2

1 21 211 1 1 1 1 2

1
2 2 2

1 2 1 2 1 2

2 12 122 2 2 2 2 1

= ( ) ( , ) ( , )

( ) ( , ) ( , ) 1

f p f p p f p p
p p p p p p

f p f p p f p p
p p p p p p

 











      
    

          

      
      

          

 (24) 

It can be seen that the proposed convex functions 1F  in Eq. (17) and 2F  in Eq. (21) satisfy 

the above three constraints. Then for any pixel i  and its corresponding superpixel j , we 

compute the condition coefficient   as follows: 
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1 1

1

1 1

1

1 1

1 1

( (2 2 ) 2 ) ( 2 )

( (2 2 ) 2 ) ( 2 )

(1 ) 1 (1 ) 1

L
X X XL X X XY

i i il i i ij

l

L
Y Y YL Y Y YX

j j jl j j ji

l

XY YX

ij ji

L L
XL YL

il jl

l l

d d d d

d d d d

    

   

 

     

 



 



 

 

 
    
 

 
    
 

 

   





 

 (25) 

Due to the fact that 0  , 0  , 0  , 0XL

il  , 0YL

jl  , 0 1XY

ij  , 0 1YX

ji  , we can get 

1  . So we can proof that the proposed optimization process converges and the limit point is a 

NE solution. 

The proposed optimization algorithm works iteratively until convergence with the initial value 

of lz  in Eq. (20) which corresponds to the seeds. Compared with the simultaneous convex 

optimization, the advantage of the proposed method is the lower computational complexity while 

keeping almost the same result. As we mentioned before, the main time cost of the simultaneous 

convex optimization focuses on solving the inversion of the matrix   in Eq. (14) with the size 

( + ) ( + )X Y X YN N N N , where XN  is the number of all pixels and YN  is the number of all 

superpixels. The time complexity of solving the inversion of   is 3(( + ) )X YN N . The main time 

cost of the proposed method focuses on solving the inversion of the matrix B  in Eq. (19) with 

size X XN N . It can be seen that B  is a symmetric matrix ( B BT ), so its inverse matrix -1B  

is also a symmetric matrix ( -1 -1B (B )T ). The time complexity of solving the inversion of B  is 

3( / 8)XN . Though it is an iterative strategy of the proposed method, we can find that B  is not 

associated with lz  from Eq. (19). Therefor B  can be regarded as a fixed matrix and we only 

need to compute its inverse matrix once in all iterative steps. So the proposed method has a lower 

time complexity than the simultaneous convex optimization theoretically.   

Consequently, the proposed algorithm for image segmentation can be summarized as follows: 

Step 1. Initialization 

Initializing the seeds, the size of the neighborhood, the controlling parameters ( , )s rh h  of 

mean shift algorithm to generate multiple over-segmentations, the coefficients  ,   and   

to control the relationships of pixel-superpixel and pixel/superpixel-label, the constants   

and  . Based on the seeds information, initializing the value of lz . 
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Step 2. Constructing multi-layer graph 

 Step 2.1 Computing the relationships of pixels with Eq. (1). 

 Step 2.2 Computing the relationships of superpixels with Eq. (5). 

 Step 2.3 Computing the relationships between pixels and superpixels with Eq. (6). 

 Step 2.4 Computing the relationships between pixels and labels with Eq. (8). 

 Step 2.5 Computing the relationships between superpixels and labels with Eq. (9). 

Step 3. Constructing segmentation model 

 Step 3.1 Estimating the probabilities between pixels and labels with Eq. (10). 

 Step 3.2 Estimating the probabilities between superpixels and labels with Eq. (11). 

Step 4. Optimization 

 Step 4.1 Updating the probabilities of pixels l  with Eq. (19). 

 Step 4.2 Updating the probabilities of superpixels lz  with Eq. (23). 

Step 5. Checking the termination condition 

 Step 5.1 Computing the current labeling: arg maxt
l

l
f  . 

 Step 5.2 If tf  equals 1tf  , stop the iteration; otherwise, go to Step 4. 

 

4. Experiments 

Following [25], the multiple over-segmentations (superpixels) were generated by varying the 

parameters of the mean shift algorithm [30]. Two parameters ( , )s rh h  need to be manually set in 

the mean shift algorithm, where sh  is the scale in the spatial domain and rh  is the scale in the 

range domain. In our experiments, we respectively set ( , ) {(10,7),(10,10),(10,15)}s rh h  , and 

hence got three over-segmentation results as our superpixels. The constant   in equations (1) (5) 

and (6) was set to 60 and   in equations (8) and (9) was set to a high value (=10
5
) to impose 

each seed belonging to its initial label. The coefficients  ,   and   are used to control the 

degrees in equations (10) and (11). We experimentally set these three coefficients  ,   and   

as 0.002 , 0.2 and 0.001, respectively. The 8-neighborhood system was used for the pixel-level 

relationships.  

We compared the performance of our method with the state-of-the-art methods [7] [11] [29] on 

the Berkeley segmentation data set [33] which consists of 500 natural images and Microsoft 

GrabCut database [34] which consists of 50 images with trimaps and ground truth segmentations. 

The “Lasso” form of trimaps provided by the Microsoft GrabCut database [34] contain the public 

seeds information, where pixels with gray value 255/64 correspond to the foreground/background 

seeds, respectively (examples were shown in the first row of Fig. 6). The Microsoft GrabCut 

database can evaluate the problem of extracting accurate object details, which has been widely 
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used for quantitative segmentation comparison with state-of-the-art methods. The error rates are 

utilized as the measurement of accuracy for segmentation, which is defined as the ratio of the 

number of wrongly labeled pixels to the total number of unlabeled pixels. The misclassified pixels 

are identified by the difference between the ground truth images and the segmentation results.  

For a clear description, Table 1 lists all the parameter settings for the comparable methods, 

including random walk (RW) [11], extended graph cuts (GrabCut) [7] and nonparametric 

higher-order (NHO) [29]. Notably, graph cuts based methods can only solve the two-class 

segmentation problem. In the multi-class segmentation experiments, we implement the -

expansion algorithm [35] in GrabCut [7] to solve the multi-class problem.   

Table 1 Conclusion of parameters for random Walk (RW) [11], GrabCut [7] and nonparametric higher-order (NHO) 

[29]. 

Method Parameter Value 

RW [11] The constant   in Eq. (1) 90 

GrabCut [7] 
The regularization parameter 50 

The number of Gaussian components 5 

NHO [29] 

( , )s rh h  of mean shift algorithm [30] {(10,7),(10,10),(10,15)}  

  in Eqs. (1, 5, 6) 60 

  in Eq. (7) 105 

  in Eq. (7) 0.002 

  in Eq. (7) 0.2 

 

We firstly demonstrated the quality of our method on the Microsoft GrabCut database [34]. 

Table 2 summarizes the error rates achieved by various methods. The mean, standard deviation 

(Std) and the average rank after the Friedman statistical test [38-39] (with a significance level of 

0.05) of error rates for RW [11], GrabCut [7], NHO [29], the proposed segmentation energy 

function with the simultaneous convex optimization [29] (SCO), and our method are obtained 

from our implementation, and the average error rates of others are quoted directly from the best 

results reported in literature. Comparing with the state-of-the-art methods, we can observe that 

SCO and our method achieve very low error rate, which proofs the effectiveness of the proposed 

multi-layer graph based segmentation model. Comparing the results between SCO and our method, 

it can be seen that almost the same results are obtained, which proofs the effectiveness of the 

proposed optimization algorithm.  

Table 2 Comparison of error rates of the proposed method and other methods with the Microsoft GrabCut database. 

Mean  standard deviation (Std) (%) and the average rank after the Friedman statistical test [38-39] (with a 
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significance level of 0.05) of error rates for RW [11], GrabCut [7], NHO [29], SCO, and our method are obtained 

from our implementation, and the average error rates (%) of other methods are quoted directly from the best results 

reported in literature. 

Methods 
Error rate 

Mean  Std Average rank 

RW [11] 6.45  4.8  4.48 

GrabCut [7] 5.46  4.2  3.66 

NHO [29] 4.25  3.7  2.94 

SCO 3.43  2.8  1.93 

Our method 3.44  2.9 1.99 

GMMRF [36] 7.90 (reported in [13]) 

Robust Pn model [25] 6.08 (reported in [29]) 

LazySnapping [22] 6.65 (reported in [9]) 

Constrained Random Walk [13] 4.08 (reported in [13]) 

Convex Active Contours [37] 3.77 (reported in [9]) 

Texture Aware model [9] 3.64 (reported in [9]) 

 

The Friedman test [38-39] was conducted to compare the performances of multiple methods. 

This test exposes the average rank of each individual method as the output. In this statistical test, 

null hypothesis, H0 affirms the equal behavior of the comparable methods. Hence, under H0, each 

method possesses equal rank, which confirms that each method is equally efficient with others. 

The alternative hypothesis, H1 endorses the difference in performances among the comparable 

methods. The average ranks for RW [11], GrabCut [7], NHO [29], SCO, and our method are listed 

in Table 2 as 4.48, 3.66, 2.94, 1.93 and 1.99, respectively. Moreover, Friedman test determines the 

chi-square ( 2 ) value as 99.16 and the p-value as 1.48e-20. From chi-square ( 2 ) distribution 

table, we find that the critical value for (5 1) 4   degree of freedom with 0.05 significance level 

is 9.49. Since the chi-square value is greater than the critical value, H0 is rejected and H1 is 

accepted. Furthermore, the small p-value (close to zero) validates the rejection of H0 and confirms 

the acceptance of H1, which substantiates the significant difference in behavior among the 

comparable methods. Fig. 5 shows the comparison of the error rate for each image by applying 

RW [11] (green line), GrabCut [7] (blue line), NHO [29] (cyan line) and our method (red line). It 

should be noted that all these results are obtained based on the same seeds provided by the 

Microsoft GrabCut database, so it is reasonable to compare with the methods reported in literature. 
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Fig. 5 Comparison of the error rate of each image in the Microsoft GrabCut database [34] of RW [11] (green line), 

GrabCut [7] (blue line), NHO [29] (cyan line) and our method (red line). 

 

Fig. 6 illustrates the example segmentations on the Microsoft GrabCut database, which shows 

that our method produces high-quality segmentation results. For example, our method can detect 

the legs of the sheep with a few seeds in the first column. In the second column, we can find that 

the arms of the people can be well detected and the segmentation boundary is also very smooth in 

our method. Figs. 7-8 also show the segmentation results and error rates on the Microsoft GrabCut 

database by using our method. These quantitative and qualitative comparisons confirm the 

accuracy of our method. 
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Fig. 6 Example segmentations using the trimaps on the Microsoft GrabCut database. Row 1st shows the test images 

with trimaps. Rows 2nd -5th show segmentation results obtained by RW [11], GrabCut [7], NHO [29] and our 

method, respectively.  

 

 

Fig. 7 The segmentation results and error rates on the Microsoft GrabCut database using our method. 
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Fig. 8 The segmentation results and error rates on the Microsoft GrabCut database using our method. 

 

Fig. 9 Comparison of the segmentation results with only one pixel-seed for each label. The first column shows 

original images with one foreground pixel-seed (red) and one background pixel-seed (green). Columns 2-4 show 

the segmentation results by random walk [11] with pixel-level information, nonparametric higher-order [29] with 

pixel-superpixel information, and our method with multi-layer combination information. 
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  (a)                (b)                (c)                (d)                (e) 

Fig. 10 Comparison of our method with the state-of-the-art methods for two-class segmentation with a few 

scribbles. (a) Input images with scribbles for foreground (red line) and background (blue line). Segmentation 

results by (b) RW [11], (c) GrabCut [7], (d) NHO [29] and (e) our method. 

 

Figs. 9-11 present the comparison of our method with the state-of-the-art interactive 

segmentation methods on the natural images selected from the Berkeley segmentation data set 

[33]. Figs. 9-10 show the two-class segmentation results. In Fig. 9, only one pixel-seed is selected 

for each label, where the first column shows the original images with one foreground pixel-seed 

(red) and one background pixel-seed (green), columns 2-4 show the segmentation results by 

applying RW [11] with pixel-level information, NHO [29] with pixel-superpixel information, and 

our method with multi-layer combination information. It can be seen that our method can obtain 

more satisfactory results even with one pixel-seed. The two-class segmentation with a few 

scribbles is shown in Fig. 10, where (a) is the input images with scribbles for foreground (red line) 

and background (blue line), and (b)-(e) are the results of RW [11], GrabCut [7], NHO [29] and our 

method, respectively. Fig. 11 shows the multi-class segmentations of the four methods, where (a) 
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is the input images with scribbles representing the red, green and blue labels. (b)-(e) are the 

segmentation results applied by RW [11], GrabCut [7], NHO [29] and our method, respectively. 

From (b), we can find that RW [11] gets bad segmentation results due to lacking enough seeds. 

Compared with GrabCut [7] in (c), NHO [29] obtains more satisfactory results even with a few 

seeds due to the utilizing of the superpixel cues. However, the results of NHO are not accurate 

enough especially for slender objects. Our method gets high-quality segmentation results with 

accurate object details, which benefits from the superpixel and label learning. 

 

(a)               (b)                (c)                (d)                (e) 

Fig. 11 Comparison of our method with the state-of-the-art methods for multi-class segmentation with a few 

scribbles. (a) Input images with scribbles representing the red, green and blue labels. (b)-(e) are the segmentation 

results applied by RW [11], GrabCut [7], NHO [29] and our method, respectively. 

 

5. Discussion 

5.1 Parameter Settings 

The parameters  ,   and   are used to control the influence of each term in Eqs. (10, 11). 

The parameter K  in Eqs. (8, 9) represents the number of the Gaussian components in the GMM. 

In this section, we analyzed the effects on the segmentation results when varying these parameters.  
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Fig. 12 shows the segmentation results by varying the parameter  . With a larger  , the 

relationship between pixel/superpixel and label plays a more important part and the details in the 

objects can be preserved. However, as shown in (d), the boundaries are not smooth enough and it 

is hard to provide satisfactory segmentations. Comparatively smoother boundaries can be 

extracted with smaller  . However, as shown in (b), the segmentations may be over-smooth and 

the details around boundaries cannot be preserved well. So it is important to find an appropriate 

  to improve the accurate boundaries and reduce the over-smooth effect. The best segmentation 

result can be obtained when 0.001  , which is shown in (c).  

 

           (a)                 (b) 0.0001           (c) 0.001            (d) 0.01   

Fig. 12 Examples of the segmentations with respect to the variation of   in Eqs. (10-11). From the test images (a) 

with trimaps, (b)-(d) give the resulting segmentations according to  . 

 

Table 3 Mean  standard deviation (Std) (%) and the average rank after the Friedman statistical test [38-39] (with 

a significance level of 0.05) of error rates over all 50 images in the Microsoft GrabCut database with different 

parameters  ,  ,   and K .  

 Test Values 0.0001 0.0005 0.001 0.005 0.01 

  Mean  Std 4.15  3.7 3.95  3.6 3.44  2.9 4.76  3.7 5.71  4.1 

 Average rank 2.91 2.57 2.02 3.24 4.26 

 Test Values 0.0002 0.001 0.002 0.01 0.02 

  Mean  Std 3.64  2.8 3.47  2.8 3.44  2.9 4.05  3.5 4.42  3.8 

 Average rank 3.50 2.73 2.41 2.79 3.57 

 Test Values 0.02 0.1 0.2 0.5 1 

  Mean  Std 3.55  2.8 3.45  2.8 3.44  2.9 3.45  2.9 3.47  2.9 

 Average rank 3.75 3.10 2.63 2.70 2.82 

 Test Values 2 3 4 5  

K  Mean  Std 3.45  2.9 3.44  2.9 3.45  2.9 3.55  2.9  

 Average rank 2.53 2.64 2.59 2.24  

 

Table 3 shows the quantitative comparisons of the mean, standard deviation (Std) and the 

average rank after the Friedman test [38-39] (with a significance level of 0.05) of error rates with 
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different  ,  ,   and K  over all 50 images in the Microsoft GrabCut database [34]. For the 

parameters  ,   and  , Friedman tests determine the chi-square ( 2 ) values as 56.37, 20.86 

and 17.35, respectively, and the p-values as 1.68e-11, 3.37e-04 and 1.70e-03, respectively. Besides, 

at 0.05 significance level and (5 1) 4   degree of freedom, the chi-square values are larger than 

the critical value. Hence these two measures determine that H0 is rejected and H1 is accepted, 

which shows that the segmentations are sensitive to the parameters   and  , and a little 

sensitive to the parameter  . For the parameter K , Friedman test determines the chi-square ( 2 ) 

value as 3.29 and the p-value as 0.35. From chi-square ( 2 ) distribution table, we find that the 

critical value for (4 1) 3   degree of freedom with 0.05 significance level is 7.81. Since the 

chi-square value is smaller than the critical value, H1 is rejected and H0 is accepted, which shows 

that the segmentations are not sensitive to the parameter K . Furthermore, it can also be found 

that the lowest average error rates and average ranks are both obtained when 0.001  , 

0.002   and 0.2  . In this paper, we experimentally set the parameters  ,  ,   and K  

to 0.001, 0.002, 0.2 and 3, respectively. 

5.2 Sensitivity analysis 

Similar to the evaluation of Kim et al. [29], we analyzed the sensitivity of our method with 

respect to seed quantity and placement. The standard segmentations were produced from the initial 

trimaps provided by the Microsoft GrabCut database. Then some seeds were randomly taken from 

0.5% to 50% of total seed quantity. The perturbed segmentations were recomputed from these 

selected seeds and compared with the standard segmentations. The normalized overlap 

1 2

1 2

o
F F

a
F F

  was used to measure the similarity of two segmentations, where 1F  and 2F  

indicate the sets of pixels assigned as foreground in two segmentations. Table 4 shows the 

sensitivity check results, where column 1
st
 is the test image IDs in the Microsoft GrabCut database 

and columns 2
nd

-6
th

 show the normalized overlap oa  by varying the seed quantity as 50%, 30%, 

10%, 1%, 0.5%, respectively, together with the number of pixel seeds (foreground/background). 

Mean and standard deviation (Std) of oa  when varying the seed quantity is shown in the last 

column. Fig. 13 shows the qualitative comparison of the standard segmentations with full seeds 

(Rows 1
st
 and 3

rd
) and the perturbed segmentations with 0.5% seeds (Rows 2

nd
 and 4

th
). From 
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these quantitative and qualitative results, it can be seen that the proposed method has a strong 

robustness to the seed quantity and placement, and can still provide robust segmentations even 

with 0.5% seeds. 

Table 4 Sensitivity check with respect to seed quantity and location. Column 1st shows the test image IDs in the 

Microsoft GrabCut database. The normalized overlap oa  is computed to measure the similarity of two 

segmentations by varying the seed quantity as 0.5%, 1%, 10%, 30%, 50% of total seed quantity. The number of 

pixel seeds (foreground/background) is also shown together with the normalized overlap oa . The last column 

shows the mean and standard deviation (Std) of oa  when varying the seed quantity. 

Image ID 50% 30% 10% 1% 0.5% Mean  Std 

37073 
0.999 

(9.4e03/2.0e04) 

0.998 

(5.6e03/1.2e04) 

0.995 

(1.9e03/3.9e03) 

0.976 

(188/394) 

0.975 

(94/197) 

0.988 

 0.011 

65019 
0.999 

(1.3e04/2.2e04) 

0.999 

(8.0e03/1.3e04) 

0.999 

(2.7e03/4.4e03) 

0.994 

(266/438) 

0.993 

(133/219) 

0.997 

 0.003 

69020 
0.999 

(9.4e03/3.3e04) 

0.999 

(5.6e03/2.0e04) 

0.998 

(1.9e03/6.5e03) 

0.983 

(188/654) 

0.965 

(94/327) 

0.988 

 0.015 

86016 
0.999 

(1.1e04/9.4e03) 

0.999 

(6.7e03/5.6e03) 

0.998 

(2.2e03/1.9e03) 

0.998 

(222/188) 

0.997 

(111/94) 

0.998 

 0.001 

124084 
0.999 

(2.4e04/2.9e04) 

0.999 

(1.4e04/1.7e04) 

0.999 

(4.7e03/5.8e03) 

0.998 

(474/576) 

0.998 

(237/288) 

0.999 

 7.5e-04 

153077 
0.999 

(1.3e04/2.6e04) 

0.996 

(7.7e03/1.5e04) 

0.990 

(2.6e03/5.2e03) 

0.968 

(258/516) 

0.940 

(129/258) 

0.978 

 0.024 

153093 
0.999 

(3.7e03/2.4e04) 

0.999 

(2.2e03/1.5e04) 

0.998 

(740/4.9e03) 

0.984 

(74/486) 

0.972 

(37/243) 

0.991 

 0.012 

189080 
0.999 

(3.0e04/2.3e04) 

0.999 

(1.8e04/1.4e04) 

0.997 

(6.1e03/4.6e03) 

0.997 

(608/464) 

0.995 

(304/232) 

0.997 

 0.001 

227092 
0.999 

(2.2e04/3.3e04) 

0.999 

(1.3e04/2.0e04) 

0.999 

(4.5e03/6.6e03) 

0.999 

(448/658) 

0.989 

(224/329) 

0.997 

 0.004 

388016 
0.999 

(3.7e03/4.1e04) 

0.999 

(2.2e03/2.5e04) 

0.999 

(740/8.3e03) 

0.996 

(74/826) 

0.994 

(37/413) 

0.998 

 0.002 

 

Fig. 14 shows the segmentation results of our method with only one pixel-seed for each label. 

Columns 1
st
 and 3

rd
 are the original images with the red seed for foreground and the green seed for 

background. From columns 2
nd

 and 4
th
, it can be seen that our method can still obtain satisfactory 

results with only one pixel-seed. Consequently, these experiments show that the proposed method 

has a good robustness to user-inputs.  
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37073 69020 65019 124084 86016

153093 153077 189080 227092 388016

 
Fig. 13 Comparison of the standard segmentations with full seeds (Rows 1st and 3rd) and the perturbed 

segmentations with 0.5% seeds (Rows 2nd and 4th). 

 

Fig. 14 The segmentation results of the proposed method with only one pixel-seed for each label. Columns 1st and 

3rd are the original images with two pixel-seeds, where one pixel seed for foreground (red) and the other for 

background (green). Columns 2nd and 4th are the corresponding segmentation results. 
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5.3 Complexity consideration 

The proposed algorithm works iteratively until convergence. The iteration step for each image 

in the Microsoft GrabCut database is shown in Fig. 15. The average iteration step of all the 50 test 

images is 6.44. Fig. 16 shows the comparison of running times for RW [11], GrabCut [7], NHO 

[29], SCO and our method on 20 test images with size 321 481  or 481 321  in the Microsoft 

GrabCut database on an Intel Xeon CPU running at 2.0 GHz in MATLAB. The time cost of NHO 

[29], SCO, and our method does not include the over-segmentation step which takes about 4.0 s 

for the mean shift algorithm [30] to generate three over-segmentations. It can be seen that the time 

costs of NHO, SCO, and our method are larger than the pixel-level based methods due to the 

utilizing of superpixel. The cost of SCO is a bit larger than NHO because of the computation of 

the relationship between pixel/superpixel and label. Our method has a lower time cost than SCO 

and NHO due to the effectiveness of the proposed optimization method based on game theory. As 

discussed above, the main time cost of these three algorithms focuses on solving the inversion of a 

large matrix. The time complexity of the proposed algorithm is 3( / 8)XN  which is lower than 

those of the other two algorithms, i.e. 3(( + ) )X YN N . The average running times of the above five 

algorithms are shown in Table 5. 

 

Fig. 15 The iteration step of the proposed optimization algorithm for each image in the Microsoft GrabCut 

database. 
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Fig. 16 Running times of RW [11], GrabCut [7], NHO [29], SCO, and our method on 20 test images in the 

Microsoft GrabCut database with size 321 481  or 481 321 . 

 

Table 5 Average running times of RW [11], GrabCut [7], NHO [29], SCO, and our method on 20 test images in the 

Microsoft GrabCut database with size 321 481  or 481 321 . 

 RW GrabCut NHO SCO Ours 

Time (s) 0.67  0.18 0.65  0.06 10.98  1.90 11.32  1.90 5.35  1.34 

 

6. Conclusion 

In this paper, we have proposed an interactive image segmentation method by fusing the 

multi-layer connections among pixel-layer, superpixel-layer and label-layer together. The 

relationships between pixels/superpixels and labels are utilized as the label constraints to further 

improve the segmentation accuracy. Then for the optimization of the proposed segmentation 

energy function, we update the probabilities of pixels and superpixels iteratively until convergence 

based on game theory. The performance of our method is tested on the challenging data sets. The 

segmentation results demonstrate that our method can produce high-quality segmentations with 

accurate object details. However, several adjusting parameters need to be manually set based on 

the experimental results, which would make the proposed algorithm less robust for the practical 

applications. Therefore, our future work will focus on how to automatically get the adaptive 

optimal parameters for each image.  
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Appendix 

1. Derivation for Eq. (14) 

Differentiating ( )X

lD   in Eq. (12) and ( )Y

lD Z  in Eq. (13) with respect to l  and lz , 

respectively, and set to zero, we can obtain all the probabilities of pixels and superpixels 

 ;l l lz   belonging to the label l : 

 
'

' 1, '

( )
P ( P ) W ( ) W 0

X L
X XY XL X XLl

l l l l l ll l
l l l l

D
z O       

  

 
       


  (26)

 

 
'

' 1, '

( )
P ( P ) W ( ) W 0

Y L
Y YX YL Y YLl

l l l l l ll l
l l l l

D Z
z z z z O z

z
   

 


       


  (27)

 

where 1P D WX X X  and 1P D WY Y Y . It can be jointly transformed into 

 

W ;WXL X YL Y
l l l lO O         (28)

 

or simply 

 

( ) W ;WXL X YL Y
l l lO O         (29)

 

where the matrix 
P P

P P

X XY

YX Y





 
   

  
 and the diagonal matrix 

1

1

1

1(1 ) W

(1 ) W

L XL

ll
L YL

ll

 

 




 
 

     
    




. Since      is positive definite, the 

linear equation (29) can be solved and we can get the probabilities l  of all pixels and 

superpixels: 

 

1H W ;WXL X YL Y
l l lO O        (30)
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 Multi-layer graph constraints are utilized for the interactive image segmentation. 

 Labeling information is introduced into the conventional pixel-superpixel combinational model.  

 The optimization based on game theory is proposed for the combinational energy functions.  

 The proposed method can obtain better performance than the state-of-the-art methods.  

 




